WOA 2010 Rimini From Service-Oriented Architectures to Nature-Inspired Pervasive Service Ecosystems: The SAPERE Approach

Franco Zambonelli & Mirko Viroli

Outline

- Motivations
- Limitations of SOA
- The Natural Inspiration
- Natural Metaphors
- The SAPERE Approach
- A Reference architecture
- Conclusions

The Changing ICT Scenario

- Several emerging trends...
- Networks are changing
 - Integration of (increasingly dense) pervasive devices embedded in physical space
 - Convergence of Internet and Telecommunication networks
 - High dynamisms and decentralization
- And so management needs are changing
 - Decentralization requires self-management and selfconfiguration
 - Need to achieve 24/7 availability at limited costs
 - Opportunistic approaches to devices integration
- And service systems have to change accordingly

New Requirements for Service Systems

- Spatiality and Situatedness
 - Space-dependencies and situation-awareness
- Adaptivity
 - Capable of reacting and re-tuning in response to the dynamics of the pervasive infrastructure
 - Adapting to changing patterns and peculiar users' needs
- Service Prosumption and Diversity
 - Users also act as producers of data and services (prosumers)
 - Decentralized production models
 - Value Co-creation
- Eternal betas and eternal evolution
 - No service/software components is ever ultimate
 - New components gets on appearing

Limits of "Traditional" SOA

- Hard to meet the identified requirements
 - No spatial concepts
 - Static orchestration of services and devices
 - Limited support for decentralized prosumption,
 - Long-term evolutions constrained by too many assumptions

Decentralized SOA

- Replicate and Distributed Services
 - To support spacedependent activities
 - To localize updates and event notifications
- As a result
 - The distinction between discovery, orchestration, and context services tend to disappear
 - Generally, interactions in the local space
- But
 - What degree of distribution in space?
 - Complex coordination among distributed middleware services

Let's Take it Radically

- No more distinction between discovery, orchestration, context, etc.
 - A single (and minimal) interaction space to handle data, interactions, context, orchestration
 - Based on a limited set of general "interaction laws"

Adaptivity by self-organization

- Based on the set of laws and relying on spatial locations, without pre-defined orchestration patterns
- No "distributed" architecture but "continuous" one
 - Abstract a spatial continuum over the network
 - Build over the dynamic infrastructure of devices
 - Inherently open to decentralized contribution
- Isn't this resembling of natural systems?

Nature-inspired Service Ecosystems

- In natural systems (and whether you think at physics, chemistry, biology, or ecology)
 - Spatiality is there by construction
 - Self-adaptation, self-configuration, self-management, are inherent part of their everyday life and self-organizing dynamics
 - Inherently open to new and increasingly diverse species
 - The infrastructure is eternal and does not change, although their components may naturally evolve
- So we can get inspiration from nature to realize "Nature-inspired Pervasive Service Ecosystems"
- But what kinds of natural systems are we talking about?

Natural Metaphors

- When modeling nature-inspired pervasive service ecosystems
 - How should its components, laws, world, be modelled?
 - What form should they take in implementation terms?
- Several possible natural metaphors can be adopted
 - Physical, chemical, biological, social
 - Corresponding at different "levels of observation"
 - Based on different mechanisms for laws and on different components behaviours
 - And in which features, of adaptability, evolvability, and the capability of controlling decentralized control are differently expressed
- It is worth outlining that such metaphors, so far, have been mostly exploited for specific solutions, applications, and/or algorithms, but never as a comprehensive approach

Natural Metaphors

	Key Characteristics			Analysis		
	Service	Eco-Laws	Space	Adaptive Self-	Diversity and	Decentralized
	Components			organization	Evolution	Control
Physical	Particles (computational components) and virtual computational fields	Movements and activities driven by fields (gradient ascent/descent by components)	Network topology or physical space	+ Local and global self-organizing spatial structures can be effectively accommodated	Few new components species can be accommodated while keeping the laws simple	+ We know well how to build and control specific structures in physics
Cnemical	Molecules (semantic descriptions representing chemical properties)	(matching of semantic descriptions and bonding of components)	(pervasive computing environments)	Mostly local self- organizing structures can be effectively accommodated	++ Several new components species can be accommodated with the same basic laws	 Reactants and catalysts can exert control over the dynamics and structure of
Biological	Simple goal-oriented organisms (e.g., ants) and pheromones	Diffusion and evaporation of chemical pheromones (affecting behaviour and activities of components)	Network topology or physical space	Morphogenesis of local shapes, global patterns via movements and pheromones diffusion	Reasonable number of new individuals and pheromone flavours can be accommodated without increasing complexity too much	Mechanisms and control of morphogenesis and biological self- organization not fully understood
Social	Goal-oriented animals (agents) of various species (classes) and included passive life-forms (resources and data)	Trophic relations (eating), digest, produce, and reproduce	Niches (pervasive computing environments)	 Local self-organizing structures can be mostly accommodated, although sometimes leading to more global patterns and structures 	++ Several new species can be accommodated with the same basic laws	Difficult to understand how to enforce control over ecosystems of many species

- None of them fully support the requirements
- A new synthesis is needed
- Calling for a proper framing of apparently diverse concept

WOA 2010 Rimini

The SAPERE Approach

- SAPERE "Self-aware Pervasive Service Ecosystems"
 - EU FP7 FET Project Funded in the "Self-awareness in autonomic systems" initiatives
 - Starting October 1st 2010, lasting 3 years
 - UNIMORE (Coordinator), UNIBO, UniGeneve, UniStAndrews, UniLinz
 - Funding: 2.3M Euro
- Self-awareness intended as a systemic property of the ecosystems to achieve adaptation and evolvability via selforganization
- Trying to define a new general-purpose synthesis out of existing natural metaphors
- With the help of a general reference architecture

SAPERE Specific Objectives

- Both of a scientific and technological nature
- All of which revolving around the unifying reference architecture

The SAPERE Reference Architecture

- It abstracts from any specific nature-inspired metaphor
 - Although SAPERE will possibly start by investigating bio-chemical approaches
- Shows how general ecosystem concepts can be framed in a uniform way
- Useful to turn the architecture into an actual middleware
 - Which SAPERE will realize and put at work

The Pervasive Computing Continuum

- Shaping the hardware ground on which the actual ecosystem will live and execute
 - Pervasive sensing and actuating devices very densely deployed in space
 - Personal computer-based systems
 - Wireless communications
- Feeding the ecosystem with data about nearly every facts of the world
 - Also via Web information

Users, Consumers, and Prosumers

- They can "observe", i.e., query, the ecosystem and its components
 - To obtain data, or results of computations
 - In a fully decentralized way
- They can "extract" components
 - To consume data and service
- They can "inject" new components and data items
 - To personalize the network
 - To deliver own services
 - To enforce control

The World

- A very minimal middleware substrate
 - No "smart" middleware services
 - Networked reactive tuple spaces
- Key goals
 - Supporting the spatial lifecycle of components over a dynamic substrate
 - Enabling and enforcing interactions across components
 - According to the "laws of nature" of the ecosystem

The Eco-Laws

- Ruling interactions and the overall dynamics and self-*
 behaviour of the system
 - How components should interact and when
 - How components should compose/aggregate
 - When component should die/ clone/reproduce
- They are eternal
 - Species of components can change, laws can't
 - Laws apply to all components
 - Different species may react to laws in differentiated ways

Species

- The software/digital components of the ecosystem
 - Software agents in the end
- May be of different nature
 - "Passive" data items
 - "Active" computational entities
 - Decentralized production
- Are all subject to the laws
 - But different components can react differently to laws
 - Based on internal characteritics and external interfaces

The Ecosystem Dynamics

- Species
 - Living in a region of "World"
 - Moving, acting, composing, as determined by laws
 - Not self-aware in theselves
- Laws
 - Impact on the local activities and interactions
 - Apply based on state of local components (feedback loops)
- World
 - The shape of space influence (and is influenced by) the above
- Dynamics
 - Seemingly self-aware adaptability/evolvability at the system level

WOA 2010 Rimini

Key Expected Results of SAPERE

- A novel model and methodology to support the development of complex nature-inspired service ecosystems in open and dynamic pervasive scenarios
 - Centered around a new nature-inspired synthesis
- Release of a uniform set of:
 - Self-* algorithms for service/data composition and aggregation (in the form of libraries)
 - Algorithms and tools for distributed management of contextual-knowledge, to enforce present- and futureadaptability in the ecosystem
- A novel middleware for pervasive computing scenarios (Open Source)
 - Integrating the stated algorithms in the form of libraries
- A set of released innovative applications:
 - showcased on the "Ecosystem of Displays" testbed

WOA 2010 Rimini

Conclusions

 Nature-inspired service ecosystem have the potential to represent a sound approach to face, once and for all, several technical and social challenges for future and emerging network and service scenario

• i.e., for the realization of eternally adaptive service ecosystems

- However, there is still a lot of foundational and experimental research to do before even understanding if such an approach can be applicable and effective
- SAPERE will experience this at the level of models, algorithms, middleware, and applications, and relying on a sound reference architecture