
ALMA MATER STUDIORUM — UNIVERSITA’ DI BOLOGNA

Nature-Inspired Techniques for 
Self-Organization in
Dynamic Networks

Ozalp Babaoglu

Department of Computer Science
University of Bologna

Italy

© 2010 Babaoglu 2

Technological progress

■ Typically, new technologies are “geeky” and require 
expertise to understand, install and maintain through 
significant  human involvement
● Power
● Transportation
● Music recording and reproduction
● Communication

© 2010 Babaoglu 3

Technological progress

■ Eventually, humans are partially or completely removed 
from deployment and maintenance as the technology 
matures and becomes simpler (for users)
● To increase adoption and sales
● To decrease cost (industrial revolution, agriculture)
● To allow super-human performance (transportation, aviation)

■ Simplicity of usage often means increased overall system 
complexity

© 2010 Babaoglu 4

Case for autonomic computing

■ Information systems have been less successful in 
following this trend

■ They tend to be very complex and costly to install, 
configure and maintain by humans

■ This is a major obstacle to progress
● For industry

▴ IT costs are becoming prohibitive, no new systems, only maintenance
▴ Integrating multiple systems is extremely difficult

● For consumers
▴ Electronic gadgets, computers, etc. cause frustration and inconvenience, 

which hinders adoption



© 2010 Babaoglu

Case for autonomic computing

■ Need information systems that are
● Self configuring
● Self optimizing
● Self healing
● Self protecting
● Self managing

■ “Self-∗” proposed as a catch-all term for most desirable 
properties

■ Outlined in IBM’s “Autonomic Computing” vision

5 © 2010 Babaoglu 6

Autonomic computing

■ Autonomic computing proposes to achieve self-
management by replacing the human element with 
software/hardware components

■ Analogy to the autonomic nervous system which
● operates subconsciously, without intervention — it is autonomous
● takes care of routine functions like heart rate, blood pressure, 

hormone production, digestion, etc.

© 2010 Babaoglu 7

Emergence is everywhere

■ Unforeseen and uncontrolled interactions among the 
system components may lead to emergent behavior

■ In large and complex systems, even if they are centrally 
controlled, emergence is often inevitable
● Power grids
● Telephone switching networks
● Retail, supply chains

■ Manifests itself in phenomenon like “cascading failures” or 
parasitic emergence

© 2010 Babaoglu

Building on interactions

■ Make interactions among components work for you rather 
than against you

■ By planning and building interactions into our components, 
we can achieve desirable global properties that emerge 
without explicit action or control

8



© 2010 Babaoglu 9

Grassroots approach

■ “Service” implemented as a large number of simple 
entities that interact in simple ways

■ Totally decentralized with no distinction between 
“managed” and “manager” entities — only “peers”

■ Can be self-organizing, adaptive and robust through 
emergence, rather than explicit programming — no control 
loop

■ May be the only viable option in large scale, dynamic 
network environments with multiple administrative 
domains (grid, peer-to-peer, cloud computing)

■ Can draw inspiration from natural, biological, social, 
economical structures or processes

© 2010 Babaoglu

Grassroots approach

■ Key ideas
● (Simple) actions based only on local information
● (Simple) interactions with small number of other components
● Power of randomization
● Power of large numbers

10

© 2010 Babaoglu

Gossip-style interaction

■ Model for structuring decentralized solutions to problems 
in large systems

■ Interactions limited to small number of peers that know of 
each other

■ System fully symmetric — all peers act identically
■ Gossiping can be

● Reactive, proactive
● Push, pull, push-pull

■ The set of peers that a node “knows” is called a view and 
defines an overlay network

11 © 2010 Babaoglu

Proactive gossip framework

// active thread
do forever
    wait(T time units)
    q = SelectPeer()
    push S to q
    pull Sq from q
    S = Update(S,Sq)

// passive thread
do forever

(p,Sp) = pull * from *
push S to p

 S = Update(S,Sp)



© 2010 Babaoglu

Proactive gossip framework

■ To instantiate the framework, need to define
● Local state S
● Peer sampling service implementing method SelectPeer()
● Style of interaction

▴ push
▴ pull
▴ push-pull

● Method Update()

13 © 2010 Babaoglu

PSS: Peer sampling service

■ Return a small number (usually one) of nodes selected at 
random among the entire population of peers

■ Conceptually simple but difficult in practice since it is not 
feasible for peers to maintain the entire population locally
● Extremely large
● Extremely dynamic

■ PSS approximates a random sample from a global 
population using only local views which have a small, 
constant size

■ PSS itself can be based on gossiping

14

© 2010 Babaoglu

What we have done

■ We have used gossiping to obtain fast, robust, 
decentralized solutions for
● Peer sampling service
● Aggregation
● Overlay topology management
● Heartbeat synchronization
● Formation creation in ubiquitous computing
● Cooperation in selfish environments

15 ALMA MATER STUDIORUM — UNIVERSITA’ DI BOLOGNA

#1
Overlay Topology 

Management



© 2010 Babaoglu 17

Topology management

■ Overlay networks are key abstractions for building large, 
decentralized systems (grid computing, peer-to-peer, 
cloud computing)

■ How to construct and maintain an overlay network that 
satisfies desired topological properties in a manner that is
● Decentralized
● Self-organizing (insensitive to initial state)
● Scalable (insensitive to network size)
● Robust (insensitive to churn)

■ If this topology management problem can be solved 
efficiently and rapidly, it can be used to satisfy application 
topological needs on-demand

© 2010 Babaoglu 18

Developmental biology

■ Morphogenesis attempts to understand the processes that 
control the organized spatial distribution of cells during 
embryonic development and that give rise to the 
characteristic forms of tissues, organs, and overall body 
anatomy

■ An interesting theory based on “differential cell adhesion”
● different cell types “sort out” based on “likes” and “dislikes” for 

each other
● any cell configuration has an energy level
● cells try to minimize the free energy in the system by a stochastic 

movement process

© 2010 Babaoglu

Developmental biology

19

Cells from different parts of an early amphibian embryo sort out 
according to their origins (Townes & Holtfreter 1955)

© 2010 Babaoglu

Back to topology management

■ In biological systems, adhesion constrained by physical 
constraints

■ In overlay networks, we can define peer relationships as 
we wish, resulting in a vast range of potential target 
topologies

■ Notion of “like” and “dislike” captured by a ranking function
■ Each ranking function encodes a particular target topology
■ Target topology can be changed on-the-fly by informing all 

nodes to start using the appropriate ranking function 
(perhaps after having distributed it)

20



© 2010 Babaoglu

Gossip framework instantiation

■ Style of interaction:  push-pull
■ Local state S:  Current neighbor set
■ Method SelectPeer():  Single random neighbor
■ Method Update():  Ranking function defined according to 

desired topology (ring, mesh, torus, DHT, etc.)

21 © 2010 Babaoglu

Torus example

22

© 2010 Babaoglu

Sorting example

23 © 2010 Babaoglu

Exponential convergence - time

24

1

101

102

103

104

 15  20  30  40  50  60  70  80  100

nu
m

be
r o

f m
is

si
ng

 ta
rg

et
 li

nk
s

cycles

(d) N=214

binary tree, c=20
binary tree, c=40
binary tree, c=80

ring, c=20
ring, c=40
ring, c=80

torus, c=20
torus, c=40
torus, c=80

1

101

102

103

104

105

 15  20  30  40  50  60  70  80  100

nu
m

be
r o

f m
is

si
ng

 ta
rg

et
 li

nk
s

cycles

(e) N=217



© 2010 Babaoglu 25

Exponential convergence - network size

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 5  10  15  20  25  30

co
nv

er
ge

nc
e 

fa
ct

or

cycles

(a) ring

c=20, N=214

c=20, N=217

c=20, N=220

c=40, N=214

c=40, N=217

c=40, N=220

c=80, N=214

c=80, N=217

c=80, N=220

ALMA MATER STUDIORUM — UNIVERSITA’ DI BOLOGNA

#2
Heartbeat Synchronization

© 2010 Babaoglu

Synchrony in nature

■ Nature displays astonishing examples of synchrony 
among independent actors
● Heart pacemaker cells
● Chirping crickets
● Menstrual cycle of women living together
● Flashing of fireflies
● Clapping of an audience at a concert

■ Actors may belong to the same organism or they may be 
parts of different organisms

27 © 2010 Babaoglu

Coupled oscillators

■ The “Coupled oscillator” model can be used to explain the 
phenomenon of “self-synchronization”

■ Each actor is an independent “oscillator”, like a pendulum
■ Oscillators coupled through their environment 

● Mechanical vibrations
● Air pressure
● Visual clues
● Olfactory signals

■ They influence each other, causing minor local 
adjustments that result in global synchrony

28



© 2010 Babaoglu

Fireflies

■ Certain species of (male) fireflies (e.g., luciola pupilla) are 
known to synchronize their flashes despite:
● Small connectivity (each firefly has a small number of 

“neighbors”)
● Communication not instantaneous
● Independent local “oscillators” with random initial periods

29 © 2010 Babaoglu

Gossip framework instantiation

■ Style of interaction:  push
■ Local state S:  Current phase ! and period " of local 

oscillator
■ Method SelectPeer():  (small) set of random neighbors
■ Method Update():  Function to reset the local oscillator 

based on the phase of arriving flash

30

© 2010 Babaoglu

The Ermentrout model

■ Modify the local oscillator period based on when flash 
arrives:
● if “too late” (! <!), then “slow down” (increase period ")

● if “too early” (! >!), then “speed up” (decrease period ")

31
!time

late early

© 2010 Babaoglu

Experimental results

■ Network size 210 nodes
■ View size of 10
■ Initial periods selected uniformly and randomly in the 

interval [0.85 - 1.15] seconds
■ Message latency uniformly and randomly distributed in the 

interval [1 - 200] ms

32



© 2010 Babaoglu

Experimental results

33 © 2010 Babaoglu

Convergence of periods

34

© 2010 Babaoglu

Chaos to coherent emissions

35

!"#$#%&'(()'(()&*+,-&.

!"#$%&'(#)%*#%&#'+"+,*%+$-))-#,)

ALMA MATER STUDIORUM — UNIVERSITA’ DI BOLOGNA

#3
Formation Creation in 
Ubiquitous Computing



© 2010 Babaoglu

Ubiquitous computing

■ Large number of mobile “smart” physical objects with 
identification, sensing and computing power
● Rescue teams with mobile devices
● Automobiles in vehicular networks
● Swarms of robots
● Satellites in earth orbit

■ Ad hoc wireless communication network (no fixed 
infrastructure) based on physical proximity or contact

■ Broadcast or multicast communication model rather than 
unicast (which would require a routing service)

37 © 2010 Babaoglu

Formation creation

■ Dynamic collection of agents that can move in any 
direction

■ Each agent has a unique ID and can determine the 
relative position of any other agent

■ Agents have access to a peer sampling service (can be 
trivially implemented if the broadcast range of agents 
covers the entire physical space)

■ Devise a protocol such that mobile agents self organize 
into pre-specified global formations in a totally 
decentralized manner

38

© 2010 Babaoglu

Gossip framework instantiation

■ Style of interaction:  pull
■ Local state S:  Current physical position and motion vector
■ Method SelectPeer():  k random samples from population
■ Method Update():  Compute motion vector based on 

positions of most and least preferred neighbor (defined in a 
manner similar to the ranking function of overlay topology 
creation inspired by differential cell adhesion)

39 © 2010 Babaoglu

Simulation: Ring formation

40



© 2010 Babaoglu

Simulation: Cross formation

41 © 2010 Babaoglu

Simulation: Self-healing ring

42

Starting formation: ring of 5000 nodes

© 2010 Babaoglu

Simulation: Self-healing ring

43

80% of the 5000 nodes are removed

© 2010 Babaoglu

Simulation: Self-healing ring

44

Remaining 1000 nodes reform the ring



ALMA MATER STUDIORUM — UNIVERSITA’ DI BOLOGNA

#4
Cooperation in Selfish 

Environments

© 2010 Babaoglu

Outline

■ P2P networks are usually open systems
● Possibility to free-ride
● High levels of free-riding can seriously degrade global 

performance

■ A gossip-based algorithm can be used to sustain high 
levels of cooperation despite selfish nodes

■ Based on simple “copy” and “rewire” operations

46

© 2010 Babaoglu

Gossip framework instantiation

■ Style of interaction:  pull
■ Local state S:  Current utility, strategy and neighborhood 

within an interaction network
■ Method SelectPeer():  Single random sample
■ Method Update():  Copy strategy and neighborhood if the 

peer is achieving better utility

47 © 2010 Babaoglu

SLAC Algorithm: “Copy and Rewire”

48

A

“Copy” strategy
B

C
A

D
E F

H

J
K

G

Compare utilities

“Rewire”



© 2010 Babaoglu

SLAC Algorithm: “Mutate”

49

A

“Mutate” strategy

A

B

C

D
E F

H

J
K

G

Drop current links

Link to random node

© 2010 Babaoglu

Prisoner’s Dilemma

■ We test SLAC with Prisoner’s Dilemma (PD)
● Captures the conflict between “individual rationality” and 

“common good”
● Defection (D) leads to higher individual utility
● Cooperation (C) leads to higher global utility

● T > R > P > S    and   2R > T+S

50

C D
C R,R S,T
D T,S P,P

© 2010 Babaoglu

Prisoner’s Dilemma

■ Prisoner’s Dilemma in SLAC
● Nodes play PD with neighbors chosen randomly in the interaction 

network
● Only pure strategies (always C or always D)
● Strategy mutation: flip current strategy
● Utility: average payoff achieved

51 © 2010 Babaoglu

Example

■ 500 nodes
■ Initial state:

● All defectors
● Random interaction network

52



© 2010 Babaoglu

Cycle 180: Small defective clusters

53 © 2010 Babaoglu

Cycle 220: Cooperation emerges

54

© 2010 Babaoglu

Cycle 230:
Cooperating cluster starts to break apart

55 © 2010 Babaoglu

Cycle 300: Defective nodes isolated, small 
cooperative clusters formed

56



© 2010 Babaoglu

Phase transition of cooperation

57

%
 o

f c
oo

pe
ra

tin
g 

no
de

s

© 2010 Babaoglu

Summary

■ “Complex systems” approach to autonomic computing and 
self-management

■ Advocated the “grassroots” approach
■ Self-organization as a key concept
■ Emergence as a key mechanism
■ Simple, localized, random interactions — gossiping
■ Interesting instances that prove to be extremely robust 

and scalable

58

© 2010 Babaoglu

Collaborators

■ Mark Jelasity
■ Alberto Montresor
■ David Hales
■ Tony Binci
■ Stefano Arteconi

59


