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Abstract—This paper proposes the use of methods for network
analysis in order to study the properties of a dynamic graph
that model the interaction among agents in an agent-based
model. This model is based on Multi Agent System definition
and simulates a multicultural crowd in which proxemics theory
and distance perception are taking into account.

After a discussion about complex network analysis and crowd
research context, an agent-based model based on SCA*PED
(Situated Cellular Agents for PEdestrian Dynamics) approach
is presented, based on two separated yet interconnected layers
representing different aspects of the overall system dynamics.
Then, an analysis of network derived from agent interactions
in the Proxemic layer is proposed, identifying characteristic
structures and their meaning in the crowd analysis. At the end
an analysis related to the identification of those characteristic
structures in some real examples is proposed.

I. INTRODUCTION

The analysis of networks can be traced back to the first
half of the XX century [1], with some works dating back to
the end of the XIX century [2]. Network analysis has been
proved useful in the study of social phenomena and their
applications, like rumor spreading [3], opinion formation [4],
[5] and the structure of social relation [6]. Outside the social
sciences, network analysis has been applied to study and model
the epidemic spreading process [7], the interaction between
proteins [8] and the link structure in the World Wide Web [9].

The analysis of social networks is an emerging topic also
in the Multi Agent System (MAS) area [10]. Some prominent
examples of this analysis can be found in reputation and trust
systems [11] with the aim of identifying how the propagation
of trust and reputation can influence system dynamics.

In this paper we propose an analysis of the graph structures
of a social network derived from the interaction among agents
in a MAS with the aim to support the simulation of crowd and
pedestrian dynamics. This system is based on a model that is
an extension of an agent-based approach previously presented
in the pedestrian dynamics area: in particular, we refer to
SCA*PED approach (Situated Cellular Agents for PEdestrian
Dynamics [12]).

In this approach, according to agent-based modeling and
simulation, crowds are studied as complex systems: other

approaches consider pedestrians as moving particles subjected
to forces (i.e., Social Force models [13]) or as cells in a
cellular automata (i.e., Cellular Automata models [14]). In
the first approach the dynamic of spatial features is studied
through spatial occupancy of individuals and each pedestrian
is attracted by its goal and repelled by obstacles modeled
as forces; in the second, the environment is represented as
a regular grid where each cell has a state that indicates the
presence/absence of pedestrians and environmental obstacles.

These traditional modeling approaches focus on pedestrian
dynamics with the aim of supporting decision-makers and
managers of crowded spaces and events. Differently, in the
agent-based approach, pedestrians are instead explicitly rep-
resented as autonomous entities, where the dynamics of the
system results from local behavior among agents and their
interactions with the environment. With respect to the particle
approach, the agent-based model can deal with individual
aspects of the crowd and differences between single agents
(or groups of agents) [15]. Since those aspect can influence
the behavior of the crowd, we consider this approach more
promising even if it is computationally intensive.

In this way some multidisciplinary proposals have recently
been suggested to tackle the complexity of crowd dynamics by
taking into account emotional, cultural and social interaction
concepts [16]–[18].

In this paper we focus on interactions among different
kinds of agents and we study how the presence of hetero-
geneities in the crowd influence its dynamics. In particular,
the model we present explicitly represents the concept of
perceived distance: despite spatial distance, perceived distance
quantifies the different perception of the same distance by
pedestrians with different cultural attitudes. In the model we
assume that pedestrians keep a certain distance between each
other following the theory proposed by Elias Canetti [19].
This distance evolves according to the situation in which the
pedestrian is: free walking, inside a crowd, inside a group in
a crowd (i.e., crowd crystal).

The concept of perceived distance is strictly related to
the concept of proxemic distance: the term proxemics was



first introduced by Hall with respect to the study of set of
measurable distances between people as they interact [20],
[21]. Perceived distances depend on some elements which
characterize relationships and interactions between people:
posture and sex identifiers, sociofugal-sociopetal1 (SFP) axis,
kinesthetic factor, touching code, visual code, thermal code,
olfactory code and voice loudness.

In order to represents spatial and perceived distances, the
proposed model represents pedestrians behaving according to
local information and knowledge on two separated yet inter-
connected layers where the first (i.e., Spatial layer) describes
the environment in which pedestrian simulation is performed
and the second (i.e., Proxemic layer) represents heterogeneities
in system members on the basis of cultural differences.

The methods and algorithms related to social network
analysis can be applied on the network created from interaction
among agents in the Proxemic layer. This study allows the
evaluation of dynamic comfort properties (for each pedestrian
and for the crowd) given a multicultural crowd sharing a
structured environment.

The paper is organized as follow: after a description of
general SCA*PED approach, we will describe deeply each
layer of the structure. Starting from the analysis of the social
network created at Proxemic layer, we will identify relevant
structures and properties of the corresponding graph. In the
end, we will propose some examples of those structures in
real world situations.

II. TWO LAYERED MODEL

In this section, the proposed multi-layered model is pre-
sented: after an introduction on SCA*PED general approach,
we will describe the Spatial and Proxemic layer focusing on
the interaction between layers and among agents.

In order to model spatial and perceived distances, we
defined a constellation of interacting MAS situated on a two-
layered structure (i.e., Spatial and Proxemic layers). Following
the SCA*PED approach definition the agents are defined
as reactive agents that can change their internal state or
their position on the environment according to perception of
environmental signals and local interactions with neighboring
agents. Each MAS layer is defined by a triple

〈Space, F,A〉

where Space models the environment in which the set A of
agents is situated, acts autonomously and interacts through
the propagation/perception of the set F of fields. IN particular
Space is modeled as an undirected graph of nodes p ∈ P .

A network, or graph, is a pair G = (V,E) where V is a
set of nodes and E ⊆ V × V is a set of edges. A graph G is
called undirected if and only if for all u, v ∈ V , (u, v) ∈
E ⇔ (v, u) ∈ E. Otherwise the graph is called directed.
A graph can be also represented as an adjacency matrix A,
where the elements au,v of the matrix are 1 if (u, v) ∈ E and

1These terms were first introduced in 1957 by H. Osmond in [22] and refer
to the different degree of tolerance of crowding.

Fig. 1. Two-layered MAS model is shown. Spatial layer describes the
environment in which pedestrian simulation is performed and Proxemic layer
refers to the dynamic perception of neighboring pedestrians. For instance, the
two agents ax and ay are adjacent in the Spatial layer and, consequently,
they are connected by an edge in the Proxemic layer due to the perception of
the fields exported.

0 otherwise. Two nodes u, v ∈ V such that (u, v) ∈ E are
called adjacent nodes. The edge of a graph could be weighed
if it is defined a weight function w : E 7→ R. In this case the
graph is a weighted graph.

The set of nodes P of Space is defined by a set of triples
〈ap, Fp, Pp〉 (i.e., every p ∈ P is a triple) where ap ∈ A∪{⊥}
is the agent situated in p, Fp ⊂ F is the set of fields active
in p and Pp ⊂ P is the set of nodes adjacent to p. Fields can
be propagated and perceived in the same or different layers.
In order to allow this interaction, the model introduces the
possibility to export (import) fields from (into) each layer.

In each layer, pedestrians and relevant elements of the
environment are represented by different kinds of agents. An
agent type τ = 〈Στ , P erceptionτ , Actionτ 〉 is defined by:
• Στ , the set of states that agents of type τ can assume;
• Perceptionτ , a function that describes how an agent is

influenced by fields defining a receptiveness coefficient
and a sensibility threshold for each field f ∈ F ;

• Actionτ , a function that allows the agent movement
between spatial positions, the change of agent state and
the emission of fields.

Each agent is defined as a triple 〈s, p, τ〉 where τ is the agent
type, s ∈

∑
τ is the agent state and p ∈ P is the site in which

the agent is situated.
Spatial and Proxemic layers will be described in the fol-

lowing sections. The first describing the environment in which
pedestrian simulation is performed while the second referring
to the dynamic perception of neighboring pedestrians accord-
ing to proxemic distances.

A. The Spatial Layer

In the Spatial layer, each spatial agent aspa ∈ Aspa emits
and exports to Proxemic layer a field to signal changes on



physical distance with respect to other agents. This means
that when an agent ay ∈ Aspa enters the neighborhood of an
agent ax ∈ Aspa (considering nodes adjacent to pax ), both
agents emits a field fpro with an intensity id proportional
to the spatial distance between ax and ay . In particular, ax
starts to emit a field fpro(ay) with information related to
ay and intensity idxy , and ay starts to emit a field fpro(ax)
with information related to ax and intensity idyx. Obviously,
idxy = idyx due to the symmetry property of distance and the
definition of id.

When physical condition changes and one of the agents exits
the neighborhood, the emitting of the fields ends.

Fields are exported into Proxemic layer and influences the
relationships and interactions between proxemic agents. In
Figure 1, a representation of the interaction between Spatial
and Proxemic layers is shown. How this field is perceived and
influences the agent interactions in the Proxemic layer, will be
described in the next section.

B. The Proxemic Layer

As previously anticipated, Proxemic layer describes the
agents behavior taking into account the dynamic perception of
neighboring pedestrians according to Proxemics theory. Prox-
emic layer hosts a heterogeneous system of agents Apro where
several kinds of agents τ1, .., τn represent different attitudes
of a multicultural crowd. Each type τi is characterized by a
perception function perci and a value of social attitude sai.
This value takes into account proxemic categories introduced
before and indicates the attitude to sociality for that type of
agent.

In this layer, space is described as a set of nodes where
each node is occupied by a proxemic agent apro ∈ Apro and
connected to the corresponding node at Spatial layer. Proxemic
agents are influenced by fields imported from Spatial layer by
means of their perception function. The latter interprets the
field fpro perceived, amplifying or reducing the value of its
intensity id on the basis of sa value.

When in the Spatial layer ax ∈ Aspa emits a field with
information on ay , in the Proxemic layer a′x ∈ τi perceives
the field fpro(ay):

perci(fpro(ay)) = sai × idxy = ipxy (1)

and a′y ∈ τj perceives the field fpro(ax):

percj(fpro(ax)) = saj × idyx = ipyx (2)

Values ipxy and ipyx quantify the different way to perceive
the physical distance between ax and ay from the point of
view of ax and ay respectively.

Each apro ∈ Apro is also characterized by a state s ∈ Σ
which dynamically evolves on the basis of the perceptions of
different fpro imported from the Spatial layer. The transition
of state represents the local change of comfort value for
each agent. State change may imply also a change in the
perception: this aspect may be introduced into the model by
specifying it into the perception function (i.e., perci(fpro, s) =

perci(fpro)). In this paper we do not consider this aspect:
future works will consider this issue.

In general, the state evolves according to the composition of
the different ip calculated on the basis of interactions which
take place in the Spatial layer.

Fig. 2. A system of four agents where the state of agent a′z ∈ Apro results
from the composition of its perceived neighbors (i.e., a′1, a

′
2, a

′
3 ∈ Apro).

Figure 2 shows an heterogeneous system composed of four
neighboring agents where the state of each agent results from
the composition of all perceived neighbors:

∀a′z ∈ Apro, sz = compose(ipz1, ipz2, .., ipzn)

where a′1, .., a
′
n ∈ Apro are the corresponding proxemic

agents of a1, ..an ∈ Aspa which belong to the neighborhood
of az ∈ Aspa.

After the perception and modulation of fields perceived, it
is possible to consider the relationship between i and j in (1)
and (2).

If i = j the two agents belong to the same type (i.e., τi =
τj) and the values ipxy and ipyx resultant from the perception
are equal (i.e., sai = saj and idxy = idyx for definition).
Otherwise, if i 6= j the two agents belong to different kinds
(i.e., τi 6= τj) and the values ipxy and ipyx resultant from
the perception are different (the agents perceive their common
physical distance in different way).

Proxemic relationships among agents are represented as an
undirected graph PG = (A,E) where A is the set of nodes
(i.e., agents) and E is the set of edges. The edges of PG are
dynamically modified as effect of spatial interactions occurring
at Spatial layer and social attitude sa. In particular, when a
field fpro(ay) is perceived from agent a′x with information on
ay , an edge between a′x and a′y is created. When field emission
ends due to the exit of the neighborhood by one agent, the
edge previously created is eliminated. The edge (x, y) between
nodes x and y is characterized by a weight wxy:

wxy = |ipxy − ipyx|

and represents the proxemic relationships between agents ax
and ay in the Spatial layer. Obviously, only if ipxy 6= ipyx the
wxy is non null.

In the next section we will introduce the basic notions on
networks and the analysis of their properties.



III. BASICS NETWORK ANALYSIS

In this section we introduce the basic properties and kinds
of graph used in the analysis of networks.

Starting with the previous definition of graph, we can
introduce the notion of node degree. The in-degree of a
node is the number of incoming edges in the node: for
v ∈ V , in(v) = |{(u, v) ∈ E}|. The out-degree of a node
is the number of outgoing edges in a node: for v ∈ V ,
out(v) = |{(v, u) ∈ E}|. The degree deg(v) of a node v ∈ V
is the sum of its in-degree and out-degree. A first simple
characterization of graphs can be done using their degree
distribution. The degree distribution P (k) of a graph G is the
ratio of nodes in the graph that have degree equal to k. For
directed graph it is useful to distinguish between the in-degree
distribution Pin(k) and the out-degree distribution Pout(k).

A first property of interest in a graph is the diameter,
indicated by Diam(G). Let d(v, u) be the shortest path from
the node u to the node v. The diameter is the maximum value
assumed by d(u, v). If the graph G is not connected then the
value of the diameter is infinite. Related to the diameter is the
average shortest path length, defined as:

L =
1

|V |(|V | − 1)

∑
u,v∈V,v 6=u

d(u, v)

As with the diameter, the average shortest path length is
infinite when the graph is not connected.

Another measure used in the analysis of networks is the
clustering coefficient introduced by Watts and Strogatz [23].
The clustering coefficent for the node v ∈ V is defined as:

c(v) =

∑
u1,u2

av,u1
au1,u2

au2,v

deg(v)(deg(v)− 1)

The clustering coefficient of the graph G as a whole is the
means of the clustering coefficient of the single nodes:

C =
1

|V |
∑
v∈V

c(v)

Many variations of the clustering coefficient has been pro-
posed, for example to remove biases [24].

A structure of particular interest is the community struc-
ture. The concept of community has been defined in social
sciences [6]. Since a community on a graph has to correspond
to a social community, it does not have a single definition.
Intuitively a community is a subgraph whose nodes are tightly
connected. The strongest definition is that a community is
a cliche (i.e., a maximal subgraph where all the nodes are
adjacent) or a k-cliche (i.e., a maximal subgraph where all
the nodes are at a distance bounded by k). Another definition
implies that the sum of the degree of the nodes towards
other community members is greater than the sum of the
degree of the nodes towards nodes outside the community.
Other definitions have been proposed to fit particular modeling
requirements.

In the study of complex networks many kinds of network
structure have been proposed:

1) RANDOM GRAPH. This is the simplest type of graph,
where pairs of nodes where connected with a certain
probability p. Unfortunately it is not able of representing
many real world phenomena;

2) “SMALL WORLD” GRAPH. In many real world net-
works there exists “shortcuts” in the communication
between nodes (i.e., edges connecting otherwise distant
parts of the graph). This property is called small world
property and is present when the average shortest path
of a graph is at most logarithmic in the number of nodes
in the graph. This property is usually associated with a
high clustering factor [23];

3) FREE SCALE NETWORKS. A more in-depth study of
real networks shows that the distribution of degrees
is not a Gaussian one. The distribution emerging in
biological [25] and technological [26] contests is the
power law distribution.
The majority of the nodes in scale-free networks have a
low degree, while a small number of nodes have a very
high degree. Those nodes are called hubs.
Since this kind of networks is ubiquitous, there are many
studies on their properties, the possible formation pro-
cesses and their resistance to attacks and damages [27].

This short introduction to network analysis is certainly not
complete. To a more in-depth introduction it is possible to
refer to one of the many survey articles [27], [28].

In the next section we will apply those properties definitions
to the graph of the Proxemic layer of the previously defined
agent-based model.

IV. STRUCTURES IDENTIFICATION

In this section we identify the structures of interests that we
expect to find in the Proxemic layer of the previously defined
MAS model.

A. Borders

A first interesting study is related to the identification of
“friction zones”, where a homogeneous group of agents of
type τi is encircled by agents of different type τj 6= τi. We
are interested in the study of the border between a group and
other agents. This structure can be interesting since we can
identify the presence of homogeneous zones in a MAS and
how those structures evolve in time and interact with other
homogeneous groups or single agents (that can belong to the
same type or a different one).

Let G = (V,E) and H = (U,F ) be two undirected graph,
{τ1, . . . , τn} a partition of V and f : V 7→ U an injective
function. Let A ,B ⊆ V such that B = V \A and that exist
A ⊆ A and B ⊆ B with the following properties:

i. For all v ∈ A , v ∈ τi for some i ∈ {1, . . . , n};
ii. For all v ∈ B, v /∈ τi;

iii. For all v ∈ A there exists u ∈ B such that (v, u) ∈ E
and for all u′ ∈ B exists v′ ∈ A such that (u′, v′) ∈ E;

iv. For all v ∈ A \ A, deg(v) = 0;
v. For all u, v ∈ A there exist a sequence f(u) =
f(u0), f(u1), . . . , f(un) = f(v) in H such that



Fig. 3. A schematic example of the border structure

u1, . . . , un ∈ A and (f(ui), f(ui+1)) ∈ F for all
i ∈ {0, . . . , n− 1}.

vi. For all C ⊃ A, C does not respect at least one between
i,iii,iv and v. For all D ⊃ B, D does not respect at least
one between ii and iii.

A subgraph GA,B = (VA,B = A ∪ B, EA,B) with EA,B =
{(u, v) ∈ E | u ∈ A, v ∈ B or u ∈ B, v ∈ A} that respects
all the previous properties will be called border for the group
A . We will also call A the inner border and B the outer
border. An example of a border structure is shown in Fig. 3.

Every property of the definition has an associated semantical
motivation. The first property states that a group must be
composed of agents of the same kind. The second property
declares that the agents directly outside the group must be of
a different kind (otherwise they must be part of the group).
The third property states that for each agent inside the inner
(resp. outer) border must exist at least one agent inside the
outer (resp. inner) border that is aware of its presence. The
fourth property declares that the agents of the group that are
not in the border must be isolated from the outside social
interactions. The fifth property uses a mapping function (that
can be used to map agents in the Proxemic layer to loci in the
Spatial layer) to assure that all the elements of the group are
in the same spatial location. The last property assures that we
are taking the entire group and not one subset of it.

Given a border GA,B = (VA,B, EA,B) and a weight function
w, we can be interested in computing the average weight of
the border:

WA,B =
1

|EA,B|
∑

(u,v)∈EA,B

wu,v

We are also interested in the average comfort of the inner
border:

Cinner =
1

|A|
∑
v∈A

sv

We can define Couter in the same way. We assume that the
concept of comfort previously introduced can be translated

into a set of real values, where to higher values correspond to
an higher level of comfort.

We can fix two values r ∈ R (a discriminating value
between low and high weights) and c ∈ R (a discriminating
value between comfortable and uncomfortable states) and
obtain 4 possible situations in which a border GA,B can stand:

1) WA,B ≤ r and Cinner ' Couter ≤ c.
In this case the group A is uncomfortable with the
agents outside it. The outside agents are also uncom-
fortable with the presence of A . The expected reaction
of the group is to close itself and to move farther from
the other agents. The agents in the outer border will also
move away from the group;

2) WA,B ≤ r and Cinner ' Couter > c.
In this case the group A is comfortable with the outer
agents and the outer agents are comfortable with A .
This is a situation in which it is possible for the group
to be open with respect to the rest of the agents;

3) WA,B > r and Cinner > Couter.
In this case the group A is comfortable with the outer
agents but the converse is false. In this situation the outer
agents are going to increase their distance from A ;

4) WA,B > r and Cinner ≤ Couter.
In this case the outer agents are comfortable with the
group A but the converse is false. In this situation A
will probably increase the distance from the outer agents
and close itself.

Note that the concept of border it is also useful to identify a
group inside the MAS graph PG. Since the set A is composed
by agents of the same type that occupy a certain space, we
can use A as our definition of group.

B. Homogeneous Spatially Located Groups

Another interesting study is the individuation of homoge-
neous groups of agents that are in the same spatial location.
This homogeneous spatially located group (HSL-group) of
agents is expected to behave as a unique entity, so its individ-
uation allows us to understand better the complex dynamics of
the whole system (due to an abstraction process on the system
components).

In order to identify the structure we use a subgraph of the
inverse graph of the perception representation in the Proxemic
layer. We are doing this transformation because two agents
of the same type τi cannot be connected by an edge in the
Proxemic Layer. This means that in the inverse graph they will
be connected. It is necessary to note that we must take care
of agents that are not connected but only as a consequence of
the spatial distance. Those agents must remain unconnected.
In this way we generate a graph where an edge between an
agent u and an agent v has the following semantic: “u and v
are of the same type and their spatial distance is low”.

Note that this definition of HSL-group is similar to the
definition of group given previously. In fact, the former is
a generalization of the latter since it is composed by spatially
adjacent groups (under the assumption that when two agents



Fig. 4. A schematic example of some HSL-group

u and v are spatially adjacent, u perceives v and v perceives
u).

We will now proceed with a formal definition of HSL-group.
Let G = (V,E) be an undirected graph and g : V × V 7→

{0, 1}. We call the inverted graph with respect to g the graph
G′ = (V,E′) where E′ = {(u, v) ∈ (V × V ) \ E | g(u, v) =
1}.

The graph G′ is a subgraph of the inverse of G since
we have added an auxiliary condition g. This condition
can be defined in the following way: gip(u, v) = 1 ⇔
max{ipu,v, ipv,u} > 0 (i.e., if at least one of the agents
perceives the other one).

Given G and a function g, a HSL-group is a connected
component of G′. Note that in our MAS model the graph G
is the representation of perceptions in the Proxemic layer PG
and the function g is gip. An example of HSL-group is shown
in Fig. 4.

Some interesting properties that can be studied inside a
single HSL-group are:

1) the small world property, since we are interested in
how the information can be propagated inside a single
HSL-group and the influence of information propagation
in the HSL-group dynamics. Recall that small world
property implies small diameter and high clustering
coefficient. For this reason, we expect that the presence
of this property can generate a cohesion mechanism
between the components of the HSL-group, otherwise
we expect the group to be uncoordinated and to have a
short lifespan as a single entity when the movement in
the spatial layer are consistent;

2) the power law degree distribution, since it implies a
scale-free structure of the HSL-group. Recall that a
scale-free structure is characterized by hubs (i.e., nodes
with high degree). Because of this, we expect the hubs
of the HSL-group to be hypothetical leaders. In fact,

Fig. 5. Pilgrimage towards Mecca.
The image is from http://www.trafficforum.org/crowdturbulence

when this condition appears, we expect to be able to
understand the group dynamics using only the leader
behaviour;

In the next section we will show some real examples where
those structures can be identified.

V. REAL WORLD EXAMPLES OF GROUPS

In this section we are going to analyze some photographic
examples to manually extract the presence of some of the
structures previously defined.

In the first part we will identify a border structure inside a
photo from the Hajj (i.e., the pilgrimage towards Mecca).

In the second part we will identify small HSL-groups at the
entrance of the 1912 Democratic National Convention.

A. Borders

In Fig. 5 a particular situation during the pilgrimage towards
Mecca is shown. During the Hajj, people of a lot of different
cultures attend to the different phases of the rite. For this
reason, a partitioning in cultural groups is expected. In the
lower right part of the image there is a group of women dressed
in dark, encircled by a cordon of men dressed in white. This
cordon represents an inner border while people near the inner
border compose the outer border. The group is composed of
the cordon of men and the women. Note that since every HSL-
group is also a group, this structure is a simple example of
HSL-group.

B. Small HSL-groups

In Fig. 6 the entrance to the 1912 Democratic National
Convention is shown. In this picture we can identify some
HSL-groups: in particular, the most evident ones are the
following:
• A AND D. They are composed of four and three people

respectively. In the first case the people are organized on
two pair disposed on parallel lines while in the second
case the people are aligned;

• B AND C. They are composed of only one person. This is
a degenerate version of a group but, nevertheless, it still



Fig. 6. Entrance to the 1912 Democratic National Convention

is an interesting case due to the effects of the interaction
between a single person and a full-fledged group.

In this picture it is difficult to see large groups, but we expect
those groups to be identifiable in simulations and in monitored
events with a large number of people.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we have introduced a new agent-based model
for the modeling of pedestrian dynamics that includes not
only spatial structures and distances but also perceived and
proxemic distances. We have also introduced and formalized
two structures of interest that can arise from the analysis of
the network of perceived distances.

We plan to implement the proposed model and the algo-
rithms to find the introduced structures in order to experimen-
tally verify the consistence of the model and the hypothesis
on the behavior of the structure introduced.

This work is part of an ongoing research project with
the aim to study interaction between people in multicultural
crowds.
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