
Classification of Whereabouts Patterns From Large-scale Mobility Data

Laura Ferrari
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Abstract

Classification of users’ whereabouts patterns is impor-
tant for many emerging ubiquitous computing applications.
Latent Dirichlet Allocation (LDA) is a powerful mecha-
nism to extract recurrent behaviors and high-level patterns
(called topics) from mobility data in an unsupervised man-
ner. One drawback of LDA is that it is difficult to give
meaningful and usable labels to the extracted topics. We
present a methodology to automatically classify the topics
with meaningful labels so as to support their use in appli-
cations. This mechanism is tested and evaluated using the
Reality Mining dataset consisting of about 350000 hours of
continuous data on human behavior.

1 Introduction

The recent diffusion of smart phones equipped with lo-
calization capabilities allows to collect data about mobility
and whereabouts in an economically feasible and unobtru-
sive way from a large user population [17, 15]. Several in-
stitutions, both in academia and industry, are exploiting this
technology to create applications to collect logs of people’s
whereabouts. This information opens new scenarios and
possibilities in the development of context-aware services
and applications, but several challenges need to be tack-
led to extract practically useful information from such large
mobility datasets. Accordingly, one of the key research is to
develop and apply pattern analysis algorithms to such data.
However, this kind of research has been impeded until re-
cently by the sheer availability of mobility data from a large
user population.

The Reality Mining dataset is a seminal dataset in this
area. It collects data about the daily life of 97 users over
10 months. Some pioneering researches started to apply
pattern-analysis and data mining algorithm to such mobility
dataset in order to extract high-level information and routine
behaviors.

A number of these researches focus on two “similar”

techniques: Principal Component Analysis (PCA) [2] and
Latent Dirichlet Allocation (LDA) [3]. The goal of both
these techniques is to discover significant patterns and fea-
tures from the input data. More precisely, from a maximum-
likelihood perspective, both these techniques aim at identi-
fying a set of latent variables z and conditional probability
distributions p(x|z) for the observed variable x represent-
ing users’ whereabouts. The latent variables z are typically
of a much lower dimensionality than x. Thus they encode
patterns in a more understandable way with reduced noise.
These techniques have been applied to a variety of people
mobility datasets [7, 8, 4] with similar modalities.

In the context of the Reality Mining dataset (that is
also the target of our work), the approach consists of ex-
tracting for each user and for each day a 24-slots ar-
ray indicating where the user was at a given time of the
day (24 hours). User’s locations are expressed as either:
‘Home’,‘Work’,‘Elsewhere’ or ‘No Signal’, the latter indi-
cating lack of data (in the remainder of this paper we refer
to these locations respectively as ‘H’, ‘W’,‘E’,‘N’). For ex-
ample, a typical day of a user could be ‘HHHHHHHHH-
WWWWWWWWWEEEHHH’ expressing the user was at
home at night and early morning, then went to work until
late afternoon, then went to somewhere else for three hours,
and finally went back home (see next Section for further
details on the dataset).

Applying PCA or LDA to a set of these arrays allows to
extract some low-dimensions latent variables (eigenvectors
and LDA-topics respectively) representing underlying pat-
terns in the data, and offering conditional probability dis-
tributions for the observed arrays (i.e., days). Figure 1 il-
lustrates some eigenvectors and LDA-topics extracted from
the Reality Mining dataset.

Eigenvectors, leftmost part of Figure 1, encode the prob-
ability of the user being at a given location: ‘H’, ‘W’,‘E’. In
the picture the lighter the color, the higher the probability.

Similarly, LDA-topics encode the probability of the user
being at a given location (in a different representation for-
mat – see next Section for details). The rightmost part of
Figure 1 shows the most probable days according to the con-
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Figure 1. (left) The top two eigenbehaviors for
Subject 4 of the Reality Mining dataset. (right)
Exemplary LDA-topics – images respectively
taken from [7] and [8]

ditional probability distribution of a given topic. These days
are thus a representation of the topic itself.

Assigning a meaning to the extracted latent variables is
a difficult task, that has been typically performed by vi-
sually inspecting the latent variable itself or the days that
strongly correlate to the variable (i.e., most probable days
given the latent variable) [7, 8, 4]. For example in [7],
by visually inspecting the first eigenbehavior represented
in Figure 1, authors conclude that it relates to the typical
weekday behavior consisting of being at work from 10:00
to 20:00 and being at home in the remaining part of the day.
The second eigenbehavior corresponds to typical weekend
behavior where the subject remains at home past 10:00 in
the morning and is out in the town (elsewhere) later that
evening. Similarly, the rightmost part of Figure 1 reports
some LDA-topics obtained in [8]. By visually inspecting
the days strongly correlated to the extracted topics, authors
conclude that topic 20 means “at home in the morning”
while topic 46 means “at work in the afternoon until late
in the evening”. Looking at these examples, it is clear how
difficult it is to give a meaning to the extracted patterns and
how difficult it is to evaluate the quality of the given mean-
ing (i.e., label).

The need to associate meaningful labels to topics have
been also considered in text-mining applications. The work
presented in [16] tries to classify latent topics extracted
from text corpora. Although this work applies to a com-
pletely different scenario, the fact that topic understanding
is an important research challenge also in other communi-
ties further motivates our work.

The contribution of this paper is to present a method-
ology to automatically classify the extracted topics without

UserID Begin End CellID
22 2004-08-27 14:00 2004-08-27 16:00 102
22 2004-08-27 16:30 2004-08-27 17:00 122
... ... ... ...

UserID CellID Label
22 102 Home
22 121 Work
... ... ...

Figure 2. Tables used in the Reality Mining
dataset.

any visual inspection or user involvement. Once meaning-
ful labels are given to the topics, the extracted pattern be-
comes readily understandable and usable in applications.
For example, life-log applications [10] could readily use
the extracted label to automatically create an entry in the
user blog. Similarly, analyzing city-wide mobility patterns,
applications could identify routine behaviors affecting city-
life and communicate such information to local government
and city planners. These tasks are simplified once a proper
label is assigned to the discovered patterns, while they are
very difficult starting from the extracted eigenbehaviors and
topics in Figure 1.

The proposed classification methodology is a powerful
tool in that it allows to express what is going to happen to
the user (i.e., which topic is going to be expressed) with
high-level meaningful labels.

Despite the fact that the presented approach is generaliz-
able both to PCA and LDA, in the following of this paper
we focus only on the LDA application. The probabilistic
model realized by LDA is better suited at extracting differ-
ent patterns from complex datasets [3, 8].

2 Data Preprocessing and LDA

In this section we present the data and algorithms repre-
senting the starting point of our work.

2.1 Data Preprocessing

The work presented in this paper is based on the GSM-
localization part of the Reality Mining dataset. This dataset
basically consists of two big tables (see Figure 2). For each
user are recorded several time-frames and the GSM tow-
ers where the user was connected. Tables have missing
data (time-frames in which no information has been logged)
due to data corruption and powered-off devices. On aver-
age logs account for approximatively 85% of the time that
the data collection lasted. Another table records the labels
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given by the users to the different GSM towers. Not all the
towers are labeled. The dataset comprises 32628 GSM tow-
ers and only 825 are labeled (2.5%). Fortunately labeled
cells are those in which users spend most of the time so
overall 75% of the dataset happens to be in labeled cells.
Still, identifying where the users have been in the remain-
ing 25% of the time is an important issue to improve the
data.

Although some works [8] try to extract patterns directly
from such data (considering as “Elsewhere” all the unla-
beled towers), we opted to run some preprocessing to com-
plete missing values. In particular, we train a SVM to infer
the labels of all the GSM towers. SVM computations have
been performed with the LIBSVM library [5], on the basis
of the following procedure:

1. We create training and testing set as:

Day of Week Weekend Hour CellID Label
Tuesday no 14 150 Work
Saturday yes 17 950 Home

Wednesday no 15 155 ?

The table associates the label to be identified to a fea-
ture vector consisting of the day of the week when the
tower is visited, whether it is a weekend or not, the
hour of the visit, and the cell ID.

2. We conduct a simple scaling on the data, converting all
the values to a [0,1] scale. This is to avoid attributes in
greater numeric ranges dominating the others.

3. Following other examples in the SVM literature [5],
we consider Radial Basis Function (RBF) kernel since
it well-applies to a vast range of classification prob-
lems. In addition, we use cross-validation to find the
best parameters C and γ of SVM and RBF respec-
tively. Basically we try all the combinations of the
parameters with an exponentially-growing grid search.
Parameters producing best cross-validation accuracy
are selected for the final model.

4. We use the best parameters to train the SVM model on
the whole training set and to classify the testing set.

SVM classification produces results with an overall 86%
accuracy in cross validation (accuracy being defined as the
proportion of correct results in the population). After SVM-
classification, the dataset is much more representative of
the plausible whereabouts of the users (missing groundtruth
information, we can not make assertions on their actual
whereabouts). For example, without SVM, a lot of days of
the users are described by being always “Elsewhere” (i.e.,
not at home nor work). This is rather unrealistic and in fact
SVM corrects this unbalance by restoring, for example, the
being-at-home-at-night behavior.

H H H H H H H H H W W W W W W W W W E E E H H H

1HHH 3HWW 8HHH

... ... ... ...
sliding window

bag of words1HHH

Figure 3. Sliding windows approach.

Following [7, 8], we organize the dataset into a sequence
of days each consisting of 24 time-slots lasting 1 hour. Each
time slot is labeled after the cell where the user spends most
of his time. If no information are present for that time slot,
the cell is marked as ‘No-Signal’.

To apply the LDA algorithm described in the following
section, the dataset has been further processed. Each day
is divided into a sequence of words each representing a 3
hours time-slot. A 3-hours sliding window runs across the
day, each word is composed of an integer value in (1,8) (we
refer to this value as time-period) and the 3 (‘H’,‘W’,‘E’ or
‘N’) labels in the sliding window. The time-period abstracts
the time of the day, it is 1 if the sliding window starts in
0:00am - 3:00am, 2 in 3:00am - 6:00am, and so on (see
Figure 3).

The fact of using time-periods of 3 hours each (in con-
trast with some previous work [8] in which different time-
periods are skewed) improves the resulting dataset in that
the number of words for each time slot is not biased by its
length, but better reflects the actual user behavior.

The resulting bag of words summarizes the original
dataset and is the input data structure for the LDA algorithm
described in the next subsection.

2.2 LDA Algorithm

LDA is a probabilistic generative model [3] used to clus-
ter documents according to the topics (i.e., word patterns)
they contain. The work in [8] proposes using this model to
extract mobility patterns from a mobility dataset.

LDA is based on the Bayesian network depicted in Fig-
ure 4. A word w is the basic unit of data, representing user
location at a given time-period (see bag of words in Fig-
ure 3). A set of N words defines a day of the user. Each
user has a dataset consisting of M documents. Each day
is viewed as a mixture of topics z, where topics are dis-
tributions over words (i.e., each topic can be represented
by the list of words associated to the probability p(w|z)).
For each day i, the probability of a word wij is given by
p(wij) =

∑T
t=1 p(wij |zit)p(zit), where T is the number

of topics. p(wij |zit) and p(zit) are assumed to have Multi-
nomial distributions with hyperparameters α and β respec-
tively. LDA uses the EM-algorithms [2] to learn the model
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Figure 4. Plate notation of the LDA model.

parameters. In our implementation we use the library Mallet
(http://mallet.cs.umass.edu) to perform these computations.

Once the model parameters have been found, Bayesian
deduction allows to extract the topics best describing the
routines of a given day (rank z on the basis of p(d|z)).
However, as already introduced, since z are just distribu-
tions over words, it is difficult to give them an immediate
meaning useful in applications. The next section contains
the main contribution of this paper: giving a meaningful la-
bel to topics z.

3 LDA-Topic Classification

3.1 Method

In extreme summary, our approach consists of identify-
ing a set of labels describing the main trends of a user typ-
ical day. For example, ‘Work 9:00 - 18:00’ represents a
day in which the user is at work from 9:00 to 18:00. We
then identify the LDA-topics representing such a label (we
refer to these topics as label-defined topics). LDA-topics
extracted from the Reality Mining dataset are labeled after
the most similar label-defined topics. Thus, rather than be-
ing described only in terms of probability distributions over
words, topics get a compact description like ‘Work 9:00 -
18:00’.

More in detail, our methodology is based on these key
points:

1. We create a set of 30 predefined labels each composed
of a place (‘H’, ‘W’, ‘E’ or ‘N’; we refer to this places
as pattern-label) and a time-frame (we refer to it as
time-frame-label). For example, the label ‘W 9:00 -
18:00’ represents the pattern where the user is at work
from 9:00 to 18:00 while the label ‘H 12:00 - 14:00’
represents the pattern where the user is at home at
lunch time. We choose these labels by visually inspect-
ing the recurrent patterns in the Reality Mining users’
days.

2. For each predefined label, we create a set of 15 sam-
ple days representing the corresponding daily behavior

(each day is represented as a 24-slots array indicating
where the user was at a given time of the day). The
different days keep the pattern indicated by the label
constant, and change the remaining part of the day.

3. For each block of 15 days, we compute one LDA-
topic. The final result is a set of 30 label-defined
topics, each representing one of the predefined labels.
For example, recalling that topics are distributions over
words, the days associated with the ‘W 9:00 - 18:00’
pattern will create a topic in which the p(w|z) of words
like 3WWW, 4WWW, 5WWW will be high compared to
other words probabilities. We verified that the result-
ing topics are not strongly affected if being produced
by a number of days smaller or greater than 15.

4. Topics extracted from the Reality Mining dataset are
classified using k-Nearest Neighbor (kNN) and the
Kullback-Leibler divergence as distance metric from
the above label-defined topics.

5. The final result is that days of a users can be de-
scribed as easily-understandable labels (e.g., ‘W 9:00 -
18:00’), rather than with just probability distributions
over words that are much more complex to be inter-
preted.

3.2 Experiments and Discussion

We conduct some experiments to test the above ap-
proach. First, we experiment with an artificially-created
dataset where we get groundtruth information, and thus
classification accuracy can be precisely evaluated. Then,
we test the system with the Reality Mining data that misses
groundtruth information.

The first set of experiments studies classification accu-
racy. Starting from the above described 30 predefined labels
expressing user patterns, we create a testing set on which to
extract and classify topics. More in detail, we select L la-
bels. For each label we create 15 days (following the same
procedure described above) and we stack the 15 ·L days to-
gether to create an artificial dataset of user’s whereabouts.
The L labels represent the groundtruth user’s whereabouts
patterns.

We extract L topics from this dataset and classify the
topics with the kNN algorithm (in this experiment with just
use k=1). The expected result is to classify the extracted
topics with the same labels used to create the dataset. For
each experiment we compute classification accuracy as:

|{classified labels} ∩ {groundtruth label}|
|{classified labels}|
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Figure 5. Classification accuracy and num-
ber of patterns used to create the testing
datasets. Minimum and maximum accuracies
give a fair measure of the variance in our re-
sults.

All the results are averaged over 100 runs of the experi-
ment in which we generate random groundtruth topics and
random days containing that topics.

Figure 5 shows the average classification accuracy as a
function of the number of patterns used to create the test-
ing dataset. The loss in the accuracy classification ob-
tained with a little number of patterns is due to the fact
that our algorithm tends to misclassify labels representing
short time-frame-label. For example, if the predefined label
is ‘H 12:00 - 14:00’, a testing day could be ‘EEEHHHH-
HWWWHHHWWWWWHHHHH’ which is better repre-
sented by a topic described by the label ‘W 9:00 - 18:00’
or ‘H 20:00 - 24:00’.This fact is also reflected by the higher
variation between the minimum and maximum classifica-
tion accuracy obtained with a little number of patterns.

To further test the approach in this experimental setting,
we add artificial noise to the testing dataset. The idea is
to corrupt the underlying pattern to see that what extent
the LDA algorithm and our classification mechanism are
able to generalize the pattern. In particular, once a day has
been created, we change noise% of the labels in the pat-
tern time-slots with random other labels. For example, if
the label expressing the testing set days is ‘E 18:00 - 24:00’
a sample day for this experiment could be ‘HHHHHHHH-
WWWWWWWWWEEEEHHH’ expressing the user was
somewhere else only until 22:00 and then went back home
(noise = 3/7 = 42%).

Figure 6 shows the classification accuracy obtained at
different noise levels in the case of datasets composed of 5
and 30 patterns respectively. As above mentioned, the vari-
ation between minimum and maximum classification accu-
racy is higher with a little number of patterns than with a lot
of them. In addition, a higher number of pattern results less
affected by the introduction of artificial noise in the testing

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50%

%
 a

cc
u

ra
cy

% noise

5 pattern

70

75

80

85

90

95

100

10% 20% 30% 40% 50%

%
 a

cc
u

ra
cy

% noise

30 pattern

Figure 6. Average classification accuracy as
a function of the noise introduced. The x-
axis represents the hours’ percentage (with
respect to the time slot length indicated by
the label) that has been randomly changed.

dataset.
In a second group of experiments, we test our classifica-

tion method on the Reality Mining dataset.
We experiment with 36 individuals and 121 consecutive

days (from 26-08-2004 to 21-12-2004). We chose this sub-
set of days with the goal of analyzing people and days for
which the data is reasonably complete and with the goal
of comparing our results with those presented in [8] taking
into consideration the same subset of days. We also com-
plete missing values with the SVM mechanism described in
the previous section.

Since groundtruth information regarding user topics are
not available, our experiments on the Reality Mining dataset
focus on two main aspects:

1. We first evaluate whether the predefined labels associ-
ated to the user’s topics are a good representation of
her days. In other words we verify whether the labels
are informative enough to reconstruct the day of the
user.

2. We evaluate if there are other labels describing user
days better then the ones selected by our approach.

With regard to the former aspect, we extract 100 LDA-
topics from all the days of each user taken into consider-
ation. For each day d we rank the topic z according to
p(d|z). Starting from he topic z with higher p(d|z), we
reconstruct the day d according to the pattern-label and the
time-frame-label associated to z. If a part of the day has
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Figure 7. Average day reconstruction accu-
racy computed over all users and days.

been already reconstructed by a previous (more probable)
topic, the mechanisms just left it unchanged. Parts of the
day that do not appear in the considered topics labels are
not reconstructed.

We then compare the real and the reconstructed day. For
each time-slot (hour) we assign an error equals to 1 if the
reconstructed label is wrong. While an error equals to 0.5 if
that hours is not reconstructed. The idea is that it is better
for the algorithm not to reconstruct a part of the day rather
than reconstructing it wrong. Figure 7 shows the distribu-
tion of days reconstruction accuracy: an average of 80% is
obtained.

Figure 8 shows days reconstruction accuracy as a func-
tion of the number of LDA-topics extracted from users’
days. The low number of LDA-topics necessary to obtain
high accuracy level can be explained by the limited number
of users’ days available and by their repetitiveness.

With regard to the latter aspect of the Reality Mining
experiments, we extract 100 LDA-topics from all the days
of each user taken into consideration. For each day d, we
want to find the topic that best describes that day. We rank
topics z according to both p(d|z) and the length of the time-
frame-label assigned to the topic. The idea is that topics
explaining a bigger part of the user day are to be preferred.

The most probable topic ztop is selected for describing
the day. We then evaluate how good the label assigned to
ztop describes the day. In particular, for each time-slot in
the time-frame-label we assign an error equals to 1 if the
reconstructed label is wrong. For each time-slot that is not
in the time-frame-label we give an error of 0.5. The idea is
to lower the performance of topics associated to short time-
frame-label, thus describing only a fraction of the day. Fi-
nally, we evaluate with the same error measure if there ex-
ists another label, better describing the day. We obtain that
the labels associated to the selected topics are better than
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Figure 8. Average day reconstruction accu-
racy as a function of the number of topics ex-
tracted from the user’s dataset.

any other label in the 80% of the cases.
All these results support the use of our classification

mechanism. Our classification can notably simplify the
comparison of users’ routines characteristic, in that it allows
direct comparison between topics meaningful labels.

4 Related Work

The availability of affordable localization mechanisms
and the recognition of location as a primary source of con-
text information has stimulated a wealth of work. In particu-
lar, the core problem addressed in this paper: understanding
users’ whereabouts.

4.1 Identifying Places

Several researches tackle the problem of understanding
people whereabouts by trying to extract and identify those
places that matter to the user. Mainstream approaches are
either based on segmenting and clustering GPS-traces to in-
fer what are the places relevant to the user [1, 18], or on
detecting places and mobility on the basis of nearby RF-
beacons such as WiFi and GSM towers [13, 7]. These ap-
proaches require the user to run a special software on her
device to collect and analyze the log of GPS or RF-beacons
available. Thus experiments with these mechanisms are
usually conducted with a relatively small user population
(the Reality Mining dataset used also in this paper is by far
one of largest datasets in this category).

Starting from these results, another important area of re-
search concerns the problem of converting from places de-
scribed in terms of geographical coordinates or abstract IDs
(e.g., GSM tower ID) to semantically-rich places such as:
“home” or “favorite pub”. The work described in [1, 14]
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adopt a probabilistic model to automatically attach seman-
tic labels to visited places. These works rely on the fact
that semantic information can be added by exploiting the
structure of a person’s daily routine. For example, the place
where the user usually spends the night can be tagged se-
mantically as “home”, while the place where the user usu-
ally goes from 8:00 to 18:00 can be tagged as “work”. In
[1] further information are extracted by geocoding the place
and mining the Web in search for relevant information.

In summary, these approaches allow to represent and un-
derstand users’ mobility patterns as a sequence of places
being visited at different times of the day. This representa-
tion resembles the “Home, Work, Elsewhere, No Signal”-
representation used in the Reality Mining dataset.

Accordingly, while this paper focuses on higher-level ab-
stractions (the sequence of places being visited is our start-
ing point), the above approaches are the fundamental ele-
ments to apply our algorithms to other mobility datasets.

4.2 Identifying Routes

A number of related work deals with the problem of
identifying the routes the user takes to move from one place
to another. These approaches run data mining algorithms
to identify recurrent patterns in the GPS tracks from mul-
tiple users. Works in this area can be divided in 2 broad
categories: “geometric-based” approaches [9] apply pattern
matching to the sequence of geographical coordinates com-
posing the tracks. We call it geometric in that they use
the physical “shape” of the path to compute the matching
among routes. “String-based” approaches, instead, create
a symbolic representation of the path (e.g., by considering
only the names of the areas crosses by the path) and apply
pattern-matching on that list of symbols [11]. In both cases,
the extracted routes can be used to classify the user current
and past whereabouts.

The work presented in this paper is similar to ‘string-
based” approaches, in that the geographic information
about the places visited by the users are lost in favor of
the more compact “Home, Work, Elsewhere, No Signal”-
representation. However, there are two important differ-
ences. On the one hand, our representation is even more
abstract that the one discussed in [11] and similar works.
Labels in our dataset (e.g., Home) are completely detached
from their physical location and, in fact, different users
will label as “Home” completely different places. On the
other hand our classification algorithm could extend also
the above related work to obtained a more descriptive label
for the extracted routes.

4.3 Identifying Routines

Even more high-level than extracting places and routes,
is the problem of identifying routine whereabouts behav-
iors.

The CitySense project (http://www.citysense.com) is
based on GPS and WiFi localization and has the goal of
monitoring and describing the city’s nightlife. In particular,
the application identifies hot-spots in the city (e.g., popular
bars and clubs) and compares the number of people located
in a given area in real time with past measures, to determine
the “activity-level” of a given night. In a similar work based
on extremely large anonymized mobility data coming from
Telecom operators authors were able to extract the spatio-
temporal dynamics of the city, highlighting where people
usually go during the day. Authors were able also to iden-
tify the most visited areas by tourists during the day and the
typical time of the visit [4, 12].

In this context the works that most directly compare to
our proposal are [7, 8]. They use PCA and LDA algorithms
to extract routine behavior from the Reality Mining dataset.
Our work provides a further classification step to give mean-
ingful labels to the extracted routines.

5 Conclusion and Future Work

In this paper we presented a methodology to automati-
cally classify the routine whereabouts extracted from a large
mobility dataset with meaningful labels.

Our future work in this area will target 3 main directions:

1. We will apply the presented approaches to “live”
datasets such as those that can be acquired from
Google Latitude (http://www.google.com/latitude) and
Flickr [12].

2. We will develop mechanisms to add/modify topic la-
bels at run time, so as to enable the use of the system
in a wide range of scenarios.

3. We will develop Web-based visualization mechanisms
to inspect and communicate whereabouts behaviors in
an effective way [6].

The ultimate goal will be to create a real live Web appli-
cation allowing different classes of users to see, understand
and predict their own and other users’ whereabouts.
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